

User Guide

Introduction

Dry and wet bulb temperature sensor adopts original imported sensor. It has stable measurement

data, high precision, strong anti-interference ability and long service life It can accurately measure the dry bulb temperature, humidity and atmospheric pressure value, and also can calculate the wet bulb temperature, dew point temperature, relative humidity and other data.

Applications

It is suitable for environmental monitoring, agrometeorology and other monitoring environments.

Features

- Multi-parameter in one, including dry bulb temperature, wet bulb temperature, humidity, atmospheric pressure and more.
- With mounting bracket, easy to install and use.
- Supporting Modbus-RTU protocol
- DC 5-12V wide voltage supply

Specifications

Specification						
Produc	t Model	UB-DWT-N1				
Power	Supply	DC 5-12V				
	Dry Bulb Temperature	Range: -40~80°C, Accuracy: ±0.2°C (@0~65°C)				
	Wet Bulb Temperature	Range: -40~80°C, Accuracy: ±0.3°C				
Measurement Data	Atmospheric Humidity	Range: 0-100%, Accuracy: ±2%RH (@10~90%RH)				
	Atmospheric Pressure	Range: 26~126kPa, Accuracy: ±50Pa				
	Dew Point Temperature	Range: -90°C~80°C, Accuracy: ±0.3°C				
Working E	nvironment	-40~60°C, 0%~80%RH				
Respon	se Time	≤1s				
Communica	tion Protocol	RS485 Modbus RTU Protocol				
RS485	Address	0xC3				
Baud	Rate	1200 bit/s,2400 bit/s, 4800 bit/s, 9600 bit/s(default), 1920 bit/s				

Communication protocols

1. Communication basic parameters

Communication Basic Parameter						
Coding System	8–bit binary					
Data Bit	8 bits					
Parity Checking Bit	none					

Stop Bit	1 bit
Error Checking	CRC Check
Baud Rate	1200 bit/s,2400 bit/s, 4800 bit/s, 9600 bit/s(default), 19200 bit/s

2. Data Frame Format

The Modbus-RTU communication protocol is used in the following format:

- Initial structure \geq 4 bytes in time.
- Address code: 1 byte, default 0xC3.
- Function code: 1 byte, support function code 0x03 (read only) and 0x06 (read/write).
- Data area: N bytes, 16-bit data, high byte comes first.
- Error check: 16-bit CRC code.
- End structure \geq 4 bytes of time.

Request											
Slave Addres	Address Function Cod		Code	Register Address		No. of Registe	ers	CRC L	SB	B CRC MSB	
1 byte	byte 1 byte		ò	2 bytes		2 bytes		1 byte		1 byte	
Response											
Slave Address	Fur	unction Code No. o		f Bytes Content 1		Content 1		Conte		nt n	CRC
1 byte		1 byte 1 b		oyte 2 bytes		2 bytes		2 byt		es	2 bytes

3. Register Address

Register Address								
Address (hex)	Content	Data Length	Function Code	Description of definitions				
0x0000	Wet Bulb Temperature	1 byte	03	Signed 16-bit integer data, divided by 10 with one decimal place, in [°C]				
0x0001	Dew Point Temperature	1 byte	03	Signed 16-bit integer data, divided by 10 with one decimal place, in [°C]				
0x0002	Dry Bulb Temperature	1 byte	03	Signed 16-bit integer data, divided by 10 with one decimal place, in [°C]				
0x0003	Air Pressure	1 byte	03	Unsigned 16-bit integer data, divided by 100 with two decimal places, in [kPa]				
0x0004	Relative Humidity	1 byte	03	Unsigned 16-bit integer data, divided by 10 with one decimal place, in [0~100%]				
0x0005	Absolute Humidity	1 byte 03		Unsigned 16-bit integer data, divided by 100 with two decimal places, in [gwater/kgAIR]				
0x0006	Vapor Pressure	1 byte 03		Unsigned 16-bit integer data, actual value, in [kPa]				
0x0007	Saturation	1 byte	03	Unsigned 16-bit integer data, divided by 100 with two decimal places, in [-]				
0x0008	Specific Volume	1 byte	03	Unsigned 16-bit integer data, divided by 1000 with three decimal places, in [m3/kg]				
0x0009	Specific Enthalpy	4 bytes	03	IEEE75 standard 32-bit floating point number, in [J/kg]				
0x0064	Slave Address	1 byte	06	1~255, default 195 (0xC3)				